These developments strengthen the positive expectations on the electrification of off-highway vehicles. Advancements in solid state battery technology are a source of great promise, due to their benefits relative to lithium-ion batteries. Solid state batteries generally have a higher energy density than lithium-ion batteries, allowing for more energy to be stored in a smaller space and thus increasing power availability. Furthermore, solid-state batteries do not consist of liquid electrolytes, which significantly reduces the risk of leakage, fire hazards and thermal instability. These characteristics can be considered a major advantage in the context of safety, especially in demanding environments where off highway machines are used.
In the context of batteries, sustainability must always be considered. Today, a large proportion of batteries are recycled at the end of their life cycle. With current technologies, it is still difficult to cover the upfront costs of recycling with the revenue from the sale of raw materials. With the increasing scarcity of raw materials and the associated costs, for OEMs, stepping into the recycling market might be a worthwhile approach to participate in a potentially profitable business and stay competitive.6
Power infrastructure – how to charge off-highway vehicles fast and smooth
Power generation, storage and supply are the key elements of the power infrastructure. Due to customer requirements for maximum vehicle availability and minimum charging time, fast charging is becoming a trend and is introduced as the most common and feasible technology for charging electric off-highway vehicles.
In theory there are other ways to provide vehicles with new energy, but there are currently no proven industrialized examples of battery replacement for dump trucks or tractors. First concepts of mobile energy storage systems, which enables locally emission-free operation and charging of construction machinery already exist on the market. Examples of this concept include modular, trailer mounted mobile storage systems featuring state-of-the-art batteries; technologies which can enable a smarter and more resilient grid infrastructure. This is particularly important for the electrification of off-highway machines used in newly developed areas with non-existent or rudimentary infrastructure and machines with high operating time, where unnecessary travel times to charging stations needs to be avoided. Local charging infrastructure can be used for off-highway machines that are used for short periods of time, have adequate time capacity for charging (e.g., tractors), and potentially have access to existing local charging infrastructure (e.g., on farms). However, the development of this infrastructure involves several challenges. In addition to the high initial investment costs, there are legal considerations to navigate, as well as challenge sourcing necessary materials and technologies at an affordable price. In agriculture, the agrivoltaic approach offers a good opportunity for farmers to be their own energy producers. Agrivoltaic describes the process for simultaneous use of land for agricultural crop production and PV power production. This dual use of land significantly greatly increases the efficiency of land use (up to 160%).7
Electrification is the next big step for the off-highway industry
The transformation from internal combustion engines to electric drives in the off-highway machinery market already has started. We expect continuous growth supported by more efficient drivelines, better capacity-weight ratio of batteries and an improving infrastructure to make electricity available at convenient price.
The electrification generates big opportunities to reduce product cost due to lower cost of the driveline and batteries, as soon solutions are available for more applications and customers. Lower maintenance cost and energy cost will also create an advantage regarding total cost of ownership compared with the traditional internal combustion engine. A transition to electrification will also benefit the environment. Reducing CO2 is increasingly required by regulation and drives the step away from oil and gas. Performance, stability, and precision of electrical components combined with solutions e. g. for precision farming will drive the transition and convince customers to step into a new age of off-highway machines.
As electrification is the next big step for the off-highway industry, OEMs and suppliers must position themselves today, so that they can meet customer demands in the future and keep pace with the technology on the market. It is crucial to anchor the transformation to electrification as a core component of every corporate strategy to adapt to the new market conditions at an early stage and, in the best case, shape them. OEMs should be aware of adjusting the respective product strategy by developing products that meet future customer needs and create a real competitive advantage.